Диодный лазер и газовый лифт

Рейтинг лучших лазеров для эпиляции по удалению волос


Рейтинг лучших лазеров для эпиляции по удалению волос

Данный scarlet rf benefits должен вдавливаться в горную породу или грунт, подлежащий разрушению, с силой, достаточной для превышения сдвиговой прочности данного материала. Традиционная сварка имеет недостаточное проникновение, толстые поры и трещины. Как выбрать лазер в аренду для проведения такой распространенной и востребованной процедуры как лазерной эпиляции? Оптическое поворотное соединительное средство, например, может быть укомплектовано лучшим томографом мрт QBH, прецизионным коллиматором и поворотной ступенью, например диодным лазером и газовый лифт Precitec, проходящим через поворотную ступень Newport к другому коллиматору Precitec и коллиматору QBH. Наиболее эффективные методики укрепления мышц тазового дна, а также подбор параметров лазерного излучения. Этот лазер стимулирует обновление коллагена и улучшает состояние кожи после акне и рубцов, гибридный диодный лазер fg31 этом время

Как выбрать лазерный станок?

Группа изобретений относится к области бурения с использованием энергии лазера большой мощности. Обеспечивается повышение производительности бурения глубоких скважин. Настоящее изобретение относится к способам, устройству и системам для осуществления проходки стволов скважин с использованием энергии лазера большой мощности, передаваемой на большие расстояния с сохранением мощности лазерной энергии для выполнения необходимых задач. Конкретно, настоящее изобретение относится к подаче энергии лазера большой мощности для создания и проходки ствола скважины в грунте и выполнения других задач в стволе скважины. В общем, стволы скважин выполняют от поверхности земли и в грунте, т.

Такие ресурсы включают в себя углеводороды, такие как нефть и природный газ, воду и геотермальную энергию из источников, таких как гидротермальные скважины. Стволы скважин также выполняют в грунте для изучения, отбора образцов и разведки материалов и пластов, находящихся под поверхностью. Их также выполняют в грунте для создания каналов под кабели и другие изделия под поверхностью земли. Термин "ствол скважины" включает в себя любое отверстие, созданное в породе, с длиной, значительно превышающей ширину, также называемое скважиной, является общеизвестным в технике узким каналом в земле. Хотя стволы скважин, в общем, ориентированы, по существу, вертикально, их могут также ориентировать под углом к вертикали и горизонтально. Стволы скважин могут дополнительно иметь сегменты или секции с различной ориентацией, они могут являться искривленными, и могут иметь формы, обычно встречающиеся в наклонно-направленном бурении.

При этом, при использовании в данном документе, если специально не оговорено, "забой" ствола скважины, "забойная" поверхность ствола скважины и аналогичные термины означают концевую часть ствола скважин, т. Проходка ствола скважины означает увеличение длины ствола скважин. Таким образом, при проходке не горизонтального ствола скважины, глубина ствола скважины также увеличивается. Стволы скважин, в общем, выполняют и их проходку осуществляют с использованием механического бурового оборудования с вращением бурового долота. Буровое долото проходит в грунт и вращается для создания ствола скважины в грунте. В общем, для выполнения операции бурения используют инструмент с алмазными рабочими поверхностями.

Данный инструмент должен вдавливаться в горную породу или грунт, подлежащий разрушению, с силой, достаточной для превышения сдвиговой прочности данного материала. Таким образом, в обычных буровых работах механические силы, превышающие сдвиговую прочность горной породы или грунта, должны быть приложены к такому материалу. Материал выбуренной породы, в общем, известен как шлам, т. Данный шлам обычно удаляют из ствола скважины с использованием текучих сред, которые могут являться жидкостями, пенами или газами. В дополнение к проходке ствола скважины, другие типы работ выполняют в строительстве ствола скважины или они связаны с его строительством, такие как работы капитального ремонта и заканчивания.

Данные типы работ включают в себя, например, прорезание и перфорирование обсадной колонны и удаление скважинных пробок. Скважинная обсадная колонна, или обсадная колонна, представляет из себя трубные изделия или другие материалы, используемые для внутренней облицовки ствола скважины. Скважинная пробка является конструкцией или материалом, размещаемым в стволе скважины для заполнения и закупоривания ствола скважины. Скважинная пробка направлена на предотвращение или ограничение притока материалов в ствол скважины. Обычно, перфорирование, т. Так, перфорирующие инструменты могут использовать заряды взрывчатого вещества для пробивания отверстий или выстреливания пуль для пробивания отверстий в обсадной колонне и стенках ствола скважины для создания таких отверстий или поровых каналов.

Вышеупомянутые обычные способы строительства и проходки ствола скважины именуют механическими методиками, или механическими методиками бурения, поскольку они требуют механического взаимодействия между буровым оборудованием, таким как буровое долото или перфорирующий инструмент, и грунтом или обсадной колонной для передачи силы, необходимой для бурения грунта или резки обсадной колонны. Теоретически возможности приспособления лазера для использования в строительстве и проходке ствола скважины уже оценивали. Так, теоретически оценивали возможность использования энергии лазерного излучения от лазерного генератора для бурения горной породы и грунта посредством дробления, термической диссоциации, плавления, испарения и комбинаций данных явлений. Плавление включает в себя переход горной породы и грунта из твердого в жидкое состояние.

Испарение включает в себя переход горной породы и грунта из твердого или жидкого состояния в газообразное состояние. Дробление включает в себя фрагментацию горной породы от локализованного действия напряжения, созданного действием тепла. Термическая диссоциация включает в себя разрыв химических связей на молекулярном уровне. В настоящее время считается, что никому не удалось добиться успеха в разработке и реализации данных теорий лазерного бурения для создания устройства, способа или системы, которые могут осуществлять проходку ствола скважины в грунте с использованием лазера, или выполнять перфорацию в скважине использованием лазера. Более того, считается, что никто не разработал параметры, и оборудование, соответствующее данным параметрам, для эффективного бурения и удаления горной породы и грунта с забоя ствола скважины с использованием лазера, а также никто не разработал параметры, и оборудование, соответствующее данным параметрам, для эффективного перфорирования скважины с использованием лазера.

Дополнительно никто не разработал параметры, оборудование, или способы, нужные для проходки ствола скважины вглубь грунта к глубинам, превышающим около фут 0,09 км , фут 0,15 км , фут 0,30 км , фут 1 км , фут 3 км и фут 5 км с использованием лазера. Конкретно, считается, что никто не разработал параметры, оборудование, или способы для подачи энергии лазера большой мощности, например, превышающей 1 кВт или больше для проходки ствола скважины в грунте. Хотя механическое бурение продвинулось вперед и является эффективным во многих типах геологических пластов, считается, что высокоэффективное средство для создания стволов скважин, проходящих через более твердые геологические пласты, такие как базальт и гранит еще предстоит разрабатывать.

Таким образом, настоящее изобретение дает решения данной проблемы, создавая параметры, оборудование и методики для использования лазера для проходки ствола скважины высокоэффективным способом через более твердые пласты горной породы, такие как базальт и гранит. Окружающая среда и большие расстояния в стволе скважины в грунте могут являться очень суровыми и жесткими к оптическому волокну, оптике и их компоновкам. Таким образом, существует необходимость создания способов и устройств для развертывания оптического волокна, оптики, и их компоновок в стволе скважины и, конкретно, в очень глубоких стволах скважин, которые должны обеспечивать данным и всем связанным с ними компонентам устойчивость к воздействию грязи, давления и температуры, присутствующим в стволе скважин и преодолевать или минимизировать потери энергии, возникающие при передаче лазерных пучков большой мощности на большие расстояния.

Настоящее изобретение решает данные проблемы, создавая средство передачи лазерных пучков большой мощности на большие расстояния. Всегда являлись необходимыми, но до настоящего изобретения считались недостижимыми, подача лазерного пучка большой мощности на расстояние в стволе скважины больше около фут 0,09 км , около фут 0,15 км , около фут 0,30 км , около фут 1 км , около фут 3 км и около фут 5 км по оптическому волокну в стволе скважины, минимизирование потерь мощности оптического излучения вследствие нелинейного эффекта и обеспечение эффективной подачи большой мощности на конце оптического волокна.

Таким образом, эффективная передача большой мощности из точки А в точку B в случае, если расстояние между точкой A и точкой B в стволе скважины больше около фут 0,5 км давно является необходимым, но до настоящего изобретения считалось недостижимым и, конкретно, считалось недостижимым при работах бурения ствола скважины. Обычная буровая установка, подающая мощность с поверхности механическим средством, должна создавать силу, действующую на горную породу, превышающую сдвиговую прочность горной породы, которую бурят. Хотя лазер показывает эффективное дробление и выкрашивание таких твердых горных пород в лаборатории при лабораторных условиях, и теоретически считается, что лазер может бурить такие твердые горные породы с производительностью превосходящей механическое бурение, в настоящее время считается, что не разработаны системы устройств или способы, обеспечивающие подачу лазерного пучка на забой ствола скважины глубиной больше около фут 0,5 км с достаточной мощностью для бурения таких твердых горных пород, не говоря уже о бурении таких твердых горных пород со скоростью проходки, равной или больше, чем при обычном механическом бурении.

Считается, что данное ограничение возможностей техники является фундаментальной и давней проблемой, решение которой дает настоящее изобретение. Необходимо разработать системы и способы, обеспечивающие подачу энергии лазерного излучения большой мощности на забой ствола глубокой скважины для проходки данного ствола скважин с экономически эффективной производительностью, и конкретно, с возможностью подачи такой энергии лазерного излучения большой мощности для бурения сквозь твердые слои пластов горной породы, включающие в себя гранит, базальт, песчаник, доломит, песок, соль, известняк, риолит, кварцит и сланец с экономически эффективной производительностью.

Более конкретно, необходимо разработать системы и способы, обеспечивающие подачу такой энергии лазерного излучения большой мощности для бурения сквозь твердые слои пластов горной породы, такие как гранит и базальт, с производительностью выше чем в обычных операциях механического бурения известного уровня техники. Настоящее изобретение, среди прочего, решает данные задачи созданием системы, устройства и способов, изложенных в данном документе. При этом средство для направления может представлять одно или несколько или комбинации из следующего: усилитель текучей среды, выпускное окно, средство направления газа, средство направления текучей среды и воздушный шабер.

Кроме того, создана лазерная компоновка низа бурильной колонны, содержащая кожух, средство для подачи лазерного пучка большой мощности, оптический блок, создающий оптический путь, по которому проходит лазерный пучок, и воздушный поток и камеру для создания области высокого давления вдоль оптического пути, и воздушный поток через кожух компоновки низа бурильной колонны с окнами, функционирующими для закачки с подсасыванием для удаления отходов из области высокого давления.

Дополнительно к этому данные системы и компоновки могут дополнительно иметь поворотную лазерную оптику, поворотное устройство механического взаимодействия, поворотное средство подачи текучей среды, одно или все три таких устройства, вращающиеся вместе, оптику формирования пучка, кожухи, средство для направления текучей среды для удаления отходов, средство для сохранения лазерного пути свободным от обломков породы, средство для уменьшения создания помех отходами лазерному пучку, оптику, содержащую сканнер, отталкивающее механическое устройство, коническое отталкивающее устройство, механическую компоновку, содержащую буровое долото, механическую компоновку, содержащую трехшарошечное буровое долото, механическую компоновку, содержащую долото с поликристаллическими алмазными вставками, инструмент с поликристаллическими алмазными вставками или режущий инструмент с поликристаллическими алмазными вставками.

Также дополнительно создана система для создания ствола скважины в земле, имеющая лазерный генератор большой мощности, компоновку низа бурильной колонны и оптоволоконное соединение лазерного генератора с компоновкой низа бурильной колонны, так что лазерный пучок от лазерного генератора передается на компоновку низа бурильной колонны, содержащую средство для подачи лазерного пучка на поверхность забоя ствола скважины, подающее средство, содержащее оптику создания энергетического воздействия пучка, при этом лазерный пучок, подаваемый из компоновки низа бурильной колонны, облучает поверхность забоя ствола скважины, по существу, с ровным профилем энергетического воздействия.

Кроме того, создан способ удаления обломков породы из ствола скважины во время лазерного бурения ствола скважины, содержащий следующие стадии: направление лазерного пучка, имеющего длину волны и имеющего мощность, по меньшей мере, около 10 кВт, в ствол скважины и к поверхности ствола скважины, находящейся, по меньшей мере, на глубине фут м в стволе скважины, при этом лазерный пучок облучает область поверхности и смещает материал с поверхности в области облучения, направление текучей среды в ствол скважины и на поверхность ствола скважины, при этом текучая среда, по существу, проходит для длины волны лазера и имеет первый и второй путь потока, прохождение текучей среды по первому пути потока и удаление смещенного материала из зоны облучения со скоростью, достаточной для предотвращения создания препятствий лазерному облучению области облучения, и прохождение текучей среды по второму пути потока и удаление смещенного материала из ствола скважины.

Кроме того, способ может также содержать вращение области облучения, направление текучей среды в первом пути потока в направлении вращения, направление текучей среды в первом пути потока в направлении, противоположном вращению, использование третьего пути потока текучей среды, при этом третий путь потока и первый путь потока текучей среды могут проходить в направлении вращения, третий путь потока и первый путь потока текучей среды могут проходить в направлении, противоположном направлению вращения, текучая среда может направляться непосредственно на область облучения, текучая среда в первом пути потока может направляться на место вблизи области облучения, текучая среда в первом пути потока может направляться на место вблизи области облучения области, находящейся впереди вращения.

Также создан способ удаления обломков породы из ствола скважины во время лазерного бурения ствола скважины, содержащий следующие стадии: направление лазерного пучка имеющего мощность, по меньшей мере, около 10 кВт, к поверхности ствола скважины; облучение области поверхности ствола скважины; смещение материала из зоны облучения; подачу текучей среды; направление текучей среды к первой области в стволе скважины; направление текучей среды к второй области; удаление направленной текучей средой смещенного материала из зоны облучения с производительностью, достаточной для предотвращения создания помех смещенным материалом лазерному облучению; удаление текучей средой смещенного материала из ствола скважины.

Данный способ может дополнительно иметь первую область, как область облучения, вторую область на боковой стенке компоновки низа бурильной колонны, вторую область вблизи первой области и вторую область, расположенную на поверхности забоя ствола скважины, вторую область вблизи первой область, когда вторая область расположена на поверхности забоя ствола скважины, первую текучую среду, направленную на область облучения, и вторую текучую среду, направленную на вторую область, первую текучую среду, такую как азот, первую текучую среду, такую как газ, вторую текучую среду, такую как жидкость, и вторую текучую среду, такую как водосодержащая жидкость. Также дополнительно создан способ удаления обломков породы из ствола скважины во время лазерного бурения ствола скважины, содержащий следующие стадии: направление лазерного пучка к поверхности ствола скважины, облучение области поверхности ствола скважины, смещение материала из зоны облучения, подачу текучей среды, направление текучей среды по первому пути к первой области в стволе скважины, направления текучей среды по второму пути ко второй области, усиление потока текучей среды во втором пути, удаление направленной текучей средой смещенного материал из зоны облучения со скоростью, достаточной для предотвращения создания помех от смещенного материала лазерному облучению, и усиление удаления текучей средой смещенного материала из ствола скважины.

Кроме того, создана лазерная компоновка низа бурильной колонны для бурения ствола скважины в земле, содержащая кожух, оптику для придания формы лазерному пучку, отверстие подачи лазерного пучка для облучения поверхности ствола скважины, первое отверстие для текучей среды в кожухе, второе отверстие для текучей среды в кожухе, содержащее усилитель текучей среды. Данную систему можно снабдить также отверстием для направления текучей среды с воздушным шабером, отверстием для направления текучей среды с усилителем текучей среды, отверстием для направления текучей среды с воздушным усилителем, множеством устройств для направления текучей среды, компоновкой низа бурильной колонны, содержащей множество отверстий для направления текучей среды, кожухом, содержащим первый кожух и второй кожух, отверстием для направления текучей среды, расположенном в первом кожухе, и средством для вращения первого кожуха, таким как двигатель.

Дополнительно, такие системы могут иметь средство, направляющее текучую среду, расположенное в лазерной компоновке низа бурильной колонны, имеющей средство для уменьшения создания помех отходами лазерному пучку и поворотную лазерную оптику, и поворотное средство, направляющее текучую среду. Специалист в данной области техники должен понимать, на основании идей, изложенных в приведенных ниже подробном описании и чертежах, что имеются различные варианты осуществления и реализации данных идей для практического применения настоящего изобретения. Соответственно, варианты осуществления, изложенные в сущности изобретения, не являются ограничительными.

На фиг. В общем, настоящие изобретения относятся к способам, устройству и системам для использования в лазерном бурении ствола скважины в грунте и, дополнительно, относятся к оборудованию, способам и системам для лазерной проходки таких стволов скважин на больших глубинах в грунте и с высокой эффективностью проходки. Данная высокая эффективность проходки является достижимой, поскольку настоящим изобретением создано средство получения энергии лазера большой мощности на забое ствола скважины, даже если забой находится на большой глубине.

В данном документе термину "грунт" придается максимально широкое возможное значение если иное специально не оговорено и термин включает в себя, без ограничения, породу, все природные материалы, такие как горные породы, и искусственные материалы, такие как бетон, находящиеся или возможно находящиеся в породе, включающие в себя, без ограничения этим, слои пластов горных пород, таких как гранит, базальт, песчаник, доломит, песок, соль, известняк, риолит, кварцит и сланцы. В качестве примера показаны источник электроснабжения, подающий электропитание по кабелям и на лазер и холодильную установку для лазера Лазер создает лазерный пучок, т.

Использован источник текучей среды. Текучая среда подается средством подачи текучей среды на барабан гибкой насосно-компрессорной трубы. Барабан гибкой насосно-компрессорной трубы вращается для выпуска и выбирания гибкой насосно-компрессорной трубы Таким образом, средство передачи лазерного пучка и средство подачи текучей среды прикреплены к барабану гибкой насосно-компрессорной трубы посредством вращающегося соединительного устройства Гибкая насосно-компрессорная труба содержит средство передачи лазерного пучка по всей длине гибкой насосно-компрессорной трубы, т. Гибкая насосно-компрессорная труба также содержит средство подачи текучей среды по всей длине гибкой насосно-компрессорной трубы на компоновку низа бурильной колонны. Кроме того, использована структура , несущая инжектор для осуществления перемещения гибкой насосно-компрессорной трубы в ствол скважины.

Дополнительно, можно использовать другие несущие структуры, например, такими структурами могут являться вышка буровой установки, кран, мачта, тренога или другие аналогичные типы структур или их гибриды и комбинации. Гибкую насосно-компрессорную трубу пропускают от инжектора через отклонитель потока, противовыбросовый превентор , оборудование устья скважины и в ствол скважины. Текучая среда подается на забой ствола скважины. На забое текучая среда выходит на компоновке низа бурильной колонны или вблизи нее и используется, кроме прочего, для транспортировки шлама, создаваемого при проходке ствола скважины, назад вверх и на выход из ствола скважины. Скважинный противовыбросовый превентор прикреплен к оборудованию устья скважины. Оборудование устья скважины, в свою очередь, может быть прикреплено к обсадной колонне.

Для целей упрощения структурные компоненты ствола скважины, такие как обсадная колонна, подвеска и цемент не показаны. Понятно, что данные компоненты можно использовать, и они должны изменяться с глубиной, типом и геологией ствола скважины, а также от других факторов. Забойный конец гибкой насосно-компрессорной трубы соединяется с компоновкой низа бурильной колонны. Компоновка низа бурильной колонны содержит оптику для подачи лазерного пучка на заданную мишень, в варианте на фиг. Пример компоновки низа бурильной колонны также содержит средство для подачи текучей среды.

Лазерный пучок затем передается от лазера через барабан и в гибкую насосно-компрессорную трубу. Лазерный пучок в точке контакта имеет достаточную мощность и является направленным на горную породу и грунт так, что способен создавать ствол скважины сравнимо с обычной операцией механического бурения или превосходя ее. В зависимости от типа грунта и горной породы и свойств лазерного пучка, данное бурение происходит посредством дробления, термической диссоциации, плавления, испарения и комбинаций данных явлений. Без связи с настоящей теорией, в настоящее время считается, что взаимодействие лазера с материалом охватывает взаимодействие лазера и текучей среды или вещества чисто областью лазерного облучения.

Таким образом, лазерное облучение создает поверхностное явление, и текучая среда, сталкивающаяся с поверхностью, быстро транспортирует обломки породы, т. Считается, что текучая среда дополнительно удаляет тепло либо на макро, или на микро уровне из зоны облучения, зоны после облучения, а из также ствола скважины, или другой среды бурения, как в варианте перфорирования. Текучая среда затем транспортирует шлам вверх и за пределы ствола скважины.

При углублении ствола скважины гибкая насосно-компрессорная труба сматывается с барабана и дополнительно спускается в ствол скважины. Так можно поддерживать приемлемое расстояние между компоновкой низа бурильной колонны и забоем ствола скважины.

Все, что вам нужно знать о лазерном сварочном аппарате

Сравните со структурой лазерного оборудования. В технологии лазерной резки на углекислом газе CO2 газ CO2 является средой, которая генерирует лазерный луч. Однако волоконные лазеры передаются через диоды и оптоволоконные кабели. Волоконно-лазерная система генерирует лазерный луч с помощью нескольких диодных накачек, а затем передает его на лазерную режущую головку по гибкому оптоволоконному кабелю вместо передачи луча через зеркало. У него много преимуществ, первое — это размер режущей станины. В отличие от газовой лазерной технологии, отражатель должен быть установлен на определенном расстоянии, ограничения по дальности нет. Более того, волоконный лазер можно установить даже рядом с головкой плазменной резки станины плазменной резки.

Эксимерные лазеры

РУ EN. Лазерный аппарат Lumenis M22, отзывы и цена. Лазерный аппарат М22 Lumenis достаточно широко используется в России благодаря известности бренда. К данному лазеру можно присоединять несколько насадок для выполнения различных процедур. Как и любое лазерное медицинское оборудование, аппарат М22 имеет свои плюсы и минусы, подтвержденные различными отзывами врачей. Наиболее широко М22 используется в косметологии и дерматологии, так как имеет в своей комплектации неаблятивные лазерные насадки, для выполнения аблятивных лазерных процедур компания Lumenis предлагает другое лазерное оборудование. Как открыть медицинскую клинику в России.

Написать комментарий

Ваш электронный адрес не будет опубликован. Поле обязательно для заполнения *

Последние записи

Свяжитесь с нами

ОТПРАВИТЬ СООБЩЕНИЕ